Search results for "low complexity regions"

showing 3 items of 3 documents

Disentangling the complexity of low complexity proteins

2020

Abstract There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichot…

Protein ConformationComputer scienceReview ArticleComputational biologyMeasure (mathematics)Evolution MolecularLow complexity03 medical and health sciencesProtein DomainsAmino Acid Sequencestructure[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Databases ProteinMolecular Biology030304 developmental biologyStructure (mathematical logic)0303 health sciencesSequence[SCCO.NEUR]Cognitive science/Neurosciencecomposition bias030302 biochemistry & molecular biologyProteinsdisorderlow complexity regionsStructure and function[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]AlgorithmsInformation SystemsBriefings in Bioinformatics
researchProduct

The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin

2021

Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins …

Protein Conformation alpha-Helical0301 basic medicineNetwork complexityHuntingtinintrinsically disordered regionsAmino Acid MotifsComputational biologyBiologyprotein interactionsArticlecompositionally biased regionsCatalysisProtein–protein interactionlcsh:ChemistryEvolution MolecularInorganic ChemistryLow complexity03 medical and health sciencesProtein DomainsProtein Interaction MappingAnimalsHumansp300-CBP Transcription FactorsAmino Acid SequenceProtein Interaction MapsHuntingtinTissue distributionPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyHuntingtin Protein030102 biochemistry & molecular biologyOrganic ChemistryNuclear Proteinsp120 GTPase Activating ProteinGeneral MedicineMultiple modesSynapsinslow complexity regionsComputer Science ApplicationshomorepeatsMicroscopy Electron030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Sequence AlignmentFunction (biology)Protein BindingInternational Journal of Molecular Sciences
researchProduct

The Conservation of Low Complexity Regions in Bacterial Proteins Depends on the Pathogenicity of the Strain and Subcellular Location of the Protein

2021

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of t…

Proteomics0301 basic medicinelcsh:QH426-470030106 microbiologyBiologyArticlecompositionally biased regionsEvolution MolecularLow complexity03 medical and health sciencesBacterial ProteinsSequence Analysis ProteinGeneticsExtracellularGenetics (clinical)chemistry.chemical_classificationBacteriaVirulenceStrain (chemistry)Computational Biologybiology.organism_classificationlow complexity regionsAmino acidhomorepeatslcsh:Genetics030104 developmental biologychemistryEvolutionary biologybacterial strainsProteomeorthologyBacterial outer membraneBacteriaFunction (biology)host–pathogen interactionsGenes
researchProduct